
1 9 9 9 ] � � 4
L j m ^ u N H J :

© M.M. Shumafov

ON THE STOCHASTIC STABILITY OF A NONLINEAR SYSTEM
PERTURBED BY A «WHITE» NOISE RANDOM PROCESS

M.M. Shumafov

Adyghya State University, Maikop

Summary. In this paper we give sufficient conditions under which one can conclude that the trivial solution of
two-dimensional nonlinear system perturbed by «white» noise random process is stochastically stable. The
Rayleigh’s equation perturbed by «white» noise is given as an example.

1. INTRODUCTION

The present paper in his idea adjoins to work [1]. In [1] Liapunov functions in the of quadratic forms
for two- dimensional linear stochastic systems
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 (1.1)

where a, b, c, d, e, f, g, h are constants, �W�ξ�   is Gaussian «white» noise random process, were con-

structed. On the basis on the constructed Liapunov functions in [1] sufficient conditions of stochastic stabil-
ity of system (1.1) were given.

The main investigation object of the present paper is the two- dimensional system
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where b, c, d, σ are constants; f(x) is differentiable function (f∈C1), f(0)=0; x(t), y(t) are scalar random
processes and   is random process of Gaussian «white» noise type.

Our aim is to establish sufficient conditions of the probability  stability, asymptotically stability in
the large and quadratic average exponential stability of the trivial solution of system (1.2).

The deterministic case σ=0 was considered by Erugin [2] and Malkin [3]. The papers [4] and [5]
were dedicated to problems of the construction of Liapunov functions. In [4] Kushner constructed Liapunov
functions for linear and certain nonlinear (power nonlinearities type) stochastic differential equations of
second order. In [5] the results of [4] were generalized and given sufficient conditions of stochastic stability
for certain second order nonlinear (generic equations of nonlinear mechanics) stochastic differential equa-
tions.

Note that the definitions of all conceptions and general facts used in this paper from the theory of
stochastic differential equations can be found in [6] or [7]. In what follows the system (1.2) is understood as
system of stochastic differential equations in the form of  Ito. By L we shall denote generating differential
operator of process (x(t), y(t)) for system (1.2), defined as
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2. STATEMENT OF RESULTS

For the system (1.2) the following propositions are true.

Theorem 1. For the given system (1.2) suppose that  f(x)∈C1(U), U={x:x <ε} , ε>0, f(0)=0 and fur-
ther:



On the stohastic stability of a nonlinear system …

Ljm^u NHJ:� ��� ���� ]� � ���� Nbabq_kdh_ H[s_kl\h J:

119

�
�

�

���

���

�

�

≠∈∀+−≤




 −





 +

≠∈∀>−

≠∈∀<+

[�8[�0G�EF
[

�[�I
GG

[

�[�I
�

�[�8[EF
[

�[�I
G�

�[�8[G
[

�[�I
�

σ

Where M is such constant that df’(x)-bc≤M   ∀x∈U.
Then the trivial solution of system (1.2) is stable in probability.
Remark 1. It is obvious that the statement of Theorem 1 is remained true, if the conditions 1)-3) re-

place into ones:
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respectively.

Theorem 2. Suppose that f(x)∈C1(R), f(0)=0 and the following conditions are satisfied for system (1.2):
1) there is a constant α, such that

α+d<0, αd-bc>0 ,   (2.1)
2) there exist constants δ0>0 and δ1>0, such that

,0
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σδα ≥++ d  (2.4)

3) there exist a constants M, such that
df’(x)-bc≤M      ∀x∈R,  (2.5)
σ2/2(d2+c2+M)< δ0δ1.  (2.6)

Then the trivial solution of system (1.2) is asymptotically stable in the large (with probability 1).

Theorem 3. Suppose that all  conditions of Theorems 2 above are true. Assume further that there is a con-
stant δ2>0 such that
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Then the trivial solution of system (1.2) is exponential stable in quadratic average.
Remark 2. In deterministic linear case, when σ=0, f(x)=ax the conditions of Theorems 1,2 and 3 turn into
necessary and sufficient Routh-Hurwitz ones: a+d<0, ad-bc>0.
Remark 3. The investigation of the system
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reduces to  the system (1.2) by change of variables x and into y and x respectively.
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Example. We shall consider the Rayleigh’s equation ,0)( =++ xxFo ���

perturbed by the «white» noise random process   :)(txξσ �

�

).()( txxxFo ξσ �

���� =++  (2.9)

The equation (2.9) reduces to the system of the form (2.8)
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By applying the Theorems 1,2 and 3 to (2.10), transformed to form (1.2), we shall get sufficient con-
ditions of probability stability, asymptotically stability in the large and in quadratic average exponential
stability of the trivial solution of the system (2.10), hence equation (2.9).

For instance, by using Theorem 2 above we get the following conditions of asymptotically stability in
the large of the trivial solution of the equation (2.9):

1) F(y)/y>δ0>0  ∀y≠0, 2) σ2<δ0.

For that it is sufficient to reduce (2.10) into (1.2) by change x↔y, then in (1.2) set f(x)= – F(x), b=
–1, c=1, d=0.

It should be noted that the condition 2) σ2<2δ0 above is weaker than corresponding one σ2<2δ0  in
Theorem 2 of paper [5]. The cause is that in the proof of the Theorem 2 [5] a  special stochastic Liapunov
function was used which in linear case [E�[�) �� =  it gives necessary and sufficient conditions of asymp-

totically stability in the large of the trivial solution of the equation (2.9).

3. PROOF OF THE THEOREM 1.

On the basis of the Liapunov function (see [1]) for linear determenistic system (σ=0, f(x)=ax), cor-
responding to system (1.2), we can construct Liapunov function for nonlinear system (1.2) as

2
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V(x,y)=(dx-by)2-bcx2+2d �
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We have, by elementary calculation from (3.1), that
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The expression of  LV
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 can be reset in the form
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From  (3.2), by using the conditions 1)-3)  of  Theorem 1, we conclude that  LV≤ 0 in some pictured

neighborhood { }0y0, x;,:),( 1 ≠≠〉〈= εε yxyxG�  of origin.

Positive definiteness of function V follows from the condition  2) of Theorem 1 and the representa-
tion of (3.1) as

∫ −+−=
x

dbcdfbydxyxV
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By virtue of general stability theorem from [6] the trivial solution of (1.2) is stable in probability.
The proof of the Theorem 1 is complete.

4. PROOF OF THEOREM 2.

The main tool for the proof of the Theorem 2 will be the Liapunov function V(x,y),defined by
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V=V1 + V2, ,
where
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where α is a constant, placed in the conditions (2.1) and (2.4) of the Theorem 2 ; ω > 0, β > 0 , ωβ > γ
(that is V2 >0). We shall choose the parameters ω, β, γ later. A straightforward calculation yields
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where
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We shall choose parameters ω, β, γ  such that :
∆(x) ≤ 0  for all x ≠ 0 and

�EG�FGFEF ���� � =+=−++=+ γβαγβωαγ  (4.2)

There are two possibilities : 1) α > 0  and  2) α < 0.
1) The case α > 0. From (4.2) we have

�kαγ −=  (4.3)

��G�
F

E +=+ ααβω  (4.4)

If a) bc > 0, so since α(α+d) < 0  there is no positive solution of the equation  (4.4).
    Let  b) bc < 0. Then the system
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Further, we find

[ ]�

�

��EFG�G
E

F

GEG

EF�G�FG −+⋅⋅=−+= αααααω  (4.6)

Easily to verify, that  .222 γαωβ => c
For chosen values ω and γ we have

��G��G
[

�[�I
�

[

�[�I +−+=− αα  (4.7)

��
F

G��G
[

�[�I
�

F

[

�[�I

ω
γ

ω
γ −−+=+ (4.8)

Easily to check , that

.0
2

<+=−
ω

α
ω
γ c

d
c

d

The condition  (2.2) of  Theorem 2 with regard for (4.7) , (4.8) implies an evaluation
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1
 with regard for (4.3) , (4.5) and (4.6)  we obtain the esti-

mation (x≠0):
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2) The case α < 0 . By elementary reasoning it is showed, that both in cases  a) bc>0 and b) bc<0 the
equation (4.4) have a positive solution  (ω , β) where ω and β are determined by (4.5) and (4.6) respec-

tively. Therefore as well in considerable case the estimation  (4.10) for LV
2

1
 holds.

As is obvious from (4.10) the conditions (2.2) , (2.3) , (2.5)  and (2.6) of  Theorem 2 imply, that  LV
is negative definite:

�� ��\[�N/9 +−<  (4.11)

where k > 0 is a constant.
Now we show , that the function V(x, y) is positive definite. It sufficient to show positive definiteness

of the function V1 , since V2 > 0. For this we represent the function V1 in the form
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From here by using the conditions (2.1) and (2.3) we have
V1 (x, y) ≥ k1 ⋅ (x2 + y2),  (4.12)

where k1 > 0  is a constant.
By taking into account that V2 (x , y) > 0 the inequality  (4.12) implies the relation
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From correlations  (4.11) – (4.13)  it follows, that all conditions of general theorem [6] about  asymptotically
stability in the large are satisfied. The proof of  Theorem 2 is complete.

5. PROOF  OF  THEOREM 3.

It repeats the proof of  previous Theorem 2 only by that addition , that the conditions (2.1) , (2.3) and

(2.7)  imply a double – sided estimation )(),()( 22
3

22
2 yxkyxVyxk +≤≤+  for some constants

k2>0, k3 > 0.

It remains to refer to general theorem from [6]. This complete the proof of Theorem 3.
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RmfZnw FuovZfwl Furtwhkl udthm

Dt_lheOwg�  Fu l_abkuf dt_mrwlu fuebg_cgw klhoZklbd kbkl_fw ]hjwj ^bnn_j_gpbZe awi_lwjblOhm
awowluj ©fZdtw_nª rOwowfuet ijhp_kk�iwjudOmf dtwa]tw[ujkuju]twj� : kbkl_fwm auplw
dtwlOmn]twf bpudthbothovZg iZ_ dtwlw]thluo bdtmowm klhoZklbdw dhg^bpb_owj ku^u]tmZ Zj etwbl�

Zkbfilhlbdw etwbl awikwmfdOb udOb wdkihg_gpbZe etwbl d\Z^jZlbdw Z]mbnufdOw otmjZ� Sukw nw^wm

Jwe_c  bawi_OwjblOm 0)( =++ xxFx ���  «fZdtw_nª rOwowfuet iwjudOmf )(txξσ �
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