Труды ФОРА

О СУЩЕСТВОВАНИИ ГОМОКЛИНИЧЕСКОЙ ОРБИТЫ В ОБОБЩЕННОЙ СИСТЕМЕ ЛОРЕНЦА

М.М. Шумафов

Санкт-Петербургский государственный университет, г. Санкт-Петербург

Доказывается существование гомоколинической орбиты у обобщенной системы Лоренца $\dot{x}=d(y-x)-axy,\ \dot{y}=-y+rx-xz,\ \dot{z}=-bz+xy.$

1. Введение. Вопросом существования гомоклинической орбиты (петли сепаратрисы седла) у стандартной системы Лоренца

$$\begin{cases} \dot{x} = d(y - x). \\ \dot{y} = -y + rx - xz, \\ \dot{z} = -bz + xy, \end{cases}$$
 (1°)

(b>0, d>0, r>0 – константы) в последнее время занимались ряд авторов: С.Р.Хастингс и Н.С.Трой [1,2], Х.Чэн [3], Г.А.Леонов [4,5].

Ниже мы рассматриваем аналогичный вопрос для обобщенной системы Лоренца

$$\begin{cases} \dot{x} = d(y - x) - axy. \\ \dot{y} = -y + rx - xz, \\ \dot{z} = -bz + xy, \end{cases}$$
 (1)

где b, d, r – положительные константы, a – произвольное вещественное число.

Численные эксперименты позволили обнаружить, как в системе Лоренца (1°), существование странных аттракторов в системе (1) и при $a\neq 0$ (см. [4, 5]. Помимо этого, система (1) привлекает внимание еще и тем, что к ней сводится ряд систем, возникающих в различных областях естествознания (см. [6] – [11]).

Отметим, что гомоклинические орбиты играют важную роль при анализе динамики систем (1°) и (1), так как они являются «предвестниками» хаоса и возникают при бифуркационных значениях параметров системы при переходе от глобальной устойчивости к стохастическим колебаниям.

2. Состояния равновесия системы и их характер. Рассмотрим два случая: 1) a>0, 2) a<0. Сначала введем числа

$$u_1 := \frac{ar - d + \sqrt{D}}{2a}, \ u_2 := \frac{ar - d - \sqrt{D}}{2a}, \ D := (d - ar)^2 + 4ad.$$

1) Случай a>0. Состояниями равновесия системы (1) являются:

1. O(0, 0, 0), если $0 < u_1 < 1$,

$$2. \ \mathrm{O}(0,0,0), \ C_1^{\pm} \Bigg(\pm \frac{1}{u_1} \sqrt{\frac{bd(u_1-1)}{a}} \ , \pm \sqrt{\frac{bd(u_1-1)}{a}}, \frac{d(u_1-1)}{au_1} \Bigg), \ \mathrm{если} \ u_1 > 1.$$

© М.М.Шумафов

2) Случай a < 0. Состояния равновесия системы (1):

1. O(0, 0, 0), если D < 0 или D > 0, $u_1 > 1$;

$$2. \ \mathrm{O}(0,\,0,\,0), \ C_2^{\pm} \Bigg(\pm \frac{1}{u_1} \sqrt{\frac{bd(1-u_1)}{(-a)}}, \pm \sqrt{\frac{bd(1-u_1)}{(-a)}}, \frac{d(1-u_1)}{(-a)u_1} \Bigg), \ \mathrm{если} \ \mathrm{D} > 0, \ 0 < u_1 < 1, \ u_2 > 1;$$

3. O(0, 0, 0),
$$C_2^{\pm} \left(\pm \frac{1}{u_1} \sqrt{\frac{bd(1-u_1)}{(-a)}}, \pm \sqrt{\frac{bd(1-u_1)}{(-a)}}, \frac{d(1-u_1)}{(-a)u_1} \right),$$

$$C_3^{\pm} \left(\pm \frac{1}{u_2} \sqrt{\frac{bd(1-u_2)}{(-a)}}, \pm \sqrt{\frac{bd(1-u_2)}{(-a)}}, \frac{d(1-u_2)}{(-a)} \right),$$

если D>0, $0 < u_1 < 1$, $u_2 < 1$ ($u_1 < u_2$).

Так как в точке O(0, 0, 0) соответствующий характеристический многочлен не зависит от a, то, как и в системе Лоренца, а) O – устойчивый узел (λ_i ,<0, i = 1, 2, 3), если r<1; и б) O – седло (λ_1 > 0, λ_3 < λ_2 <0, если r >1. Здесь

$$\lambda_i = \frac{1}{2} \left[-(d+1) - (-1)^i \sqrt{(d+1)^2 + 4d(r-1)} \right], \quad \lambda_3 = -b \ (i = 1, 2).$$

Соответствующие числам λ_1 , λ_2 , λ_3 собственные векторы $\xi_{\lambda_1}, \xi_{\lambda_2}, \xi_{\lambda_3}$ имеют вид:

$$\xi_{\lambda_i} = (1; 1 + \frac{\lambda_i}{d}; 0); \xi_{\lambda_3} = (0,0,-b) \quad (i = 1,2).$$

Таким образом, как и в системе Лоренца, существует двумерное устойчивое многообразие, содержащее положительную и отрицательную полуоси оси z и одномерное неустойчивое многообразие $\gamma = \gamma^+ \cup \gamma^-$, где γ^+ и γ^- примыкают к началу координат при $t \to -\infty$. Так как система (1) инвариантна относительно замены $x \to -x$, $y \to -y$, $z \to z$, то полутраектория γ^- симметрична полутраектории γ^+ относительно оси z. Полутраектория γ^+ входит в начало координат O(0, 0, 0) при $t \to -\infty$ по направлению вектора ξ_λ и имеет следующее асимптотическое представление при $x \to 0$.

$$\gamma^{+} = \left(x, \left(1 + \frac{\lambda_{1}}{d}\right)x + O(x^{2}), \frac{d + \lambda_{1}}{d(b + 2\lambda_{1})}x^{2} + O(x^{2})\right) \quad (x \to 0).$$

Относительно особых точек C_k^{\pm} (k=1,2,3) мы сделаем следующее (наиболее типичное) предположение (P): особые точки C_k^{\pm} (k=1,2,3) являются или устойчивыми узлами (λ_i ,<0, i=1,2,3), или устойчивыми фокусами (λ_1 <0, λ_j = $\alpha \pm \beta i$, α <0, j=2,3), или седло-фокусами (λ_1 <0, λ_j = $\alpha \pm \beta i$, α >0, j=2,3).

Отметим, что простейшие свойства системы (1), такие как диссипативность, асимптотическая устойчивость в целом состояния равновесия O(0, 0, 0), глобальная асимптотическая устойчивость, установлены в [12].

3. Существование гомоклинической орбиты. Докажем теперь существование гомоклинической орбиты в системе (1). Введем в рассмотрение гладкий путь $\{(a(s), b(s), d(s), r(s))\}$, $0 \le s \le 1$, в пространстве параметров $\{(a, b, d, r)\}$.

Через $\gamma_s^+(t) = \{(x_s(t), y_s(t), z_s(t))\}$ будем обозначать неустойчивое многообразие начала координат, которое для достаточно больших по модулю отрицательных значений t лежит в полупространстве $\{x>0\}$.

Теорема. Пусть для системы (1) с параметрами a(0), b(0), d(0), r(0) существуют числа $T_0^1 < T_0^2 < T_0^3$ такие, что

1)
$$\dot{x}_0(T_0^1) = 0$$
, $\dot{x}_0(t) > 0$ $\forall t \in (-\infty, T_0^1)$, $x^{(2m)}(T_0^1) < 0$ при некотором $m \in \mathbb{N}$;

2)
$$y_0(T_0^2) = 0$$
, $\dot{y}_0(t) < 0 \ \forall t \in [T_0^1, T_0^2]$;

3)
$$x_0(T_0^3) = 0$$
, $y_0(t) < 0 \ \forall t \in (T_0^2, T_0^3)$, $\dot{x}_0(t) \le 0 \ \forall t \in [T_0^2, T_0^3]$.

Предположим далее, что для системы (1) с параметрами a(1), b(1), d(1), r(1) имеет место неравенство

$$x_1(t) > 0 \ \forall t \in (-\infty, +\infty). \tag{2}$$

Тогда существует такое значение $s^* \in (0,1]$, что система (1) с параметрами $a(s^*)$, $b(s^*)$, $d(s^*)$, $r(s^*)$ имеет гомоклиническую орбиту.

Доказательство. Будем использовать метод "пристрелки" (shooting approach), предложенный в работах [1] и [2], а затем использованный в работах [13], [3], [5] для доказательства существования гомоклинической орбиты в системе Лоренца.

Введем в рассмотрение множество Σ, определяемое следующим образом:

$$\Sigma = \begin{cases} s \in [0,1] \\ 1) \ \exists T_s^1 : \dot{x}_s(T_s^1) = 0, \ \dot{x}_s(t) > 0 \ \forall t \in (-\infty, T_s^1), \ x^{(2m)}(T_s^1) < 0 \ \text{при некотором} \ m \in N; \\ 2) \ \exists T_s^2 > T_s^1 : \ y_s(T_s^2) = 0, \ \dot{y}_s(t) < 0 \ \forall t \in [T_s^1, T_s^2]; \\ 3) \ \exists T_s^3 > T_s^2 : \ x_s(T_s^3) = 0, \ \dot{x}_s(t) \le 0 \ \forall t \in [T_s^2, T_s^3], \ y_s(t) < 0 \ \forall t \in (T_s^2, T_s^3]. \end{cases}$$

Доказательство теоремы разобьем на несколько этапов.

- 1. От множества Σ . Ясно, что множество Σ не пусто, поскольку в силу условий 1)—3) теоремы $0 \in \Sigma$. Заметим, что в силу условия (2) теоремы $1 \not\in \Sigma$. Пусть $\overline{s} \in \Sigma$. В силу непрерывной зависимости полутраектории $\gamma_s^+(t)$, $t \in (-\infty,t)$ от параметра [14] для всех s, достаточно близких s, будут существовать числа $T_s^1 < T_s^2 < T_s^3$, удовлетворяющие всем трем условиям в определении множества Σ . Следовательно, множеству Σ принадлежит число \overline{s} вместе с некоторой его малой окрестностью, то есть Σ открыто.
 - 2. Определение числа s^* , траектория $\gamma_{s^*}^+(t)$. Определим

$$s^* := \sup \Sigma \equiv \sup \{s : s \in \Sigma\}.$$

Поскольку Σ открыто, то $s^* \notin \Sigma$. Таким образом, $[0,s^*)$ – максимальный интервал, на котором выполнены соотношения 1) - 3), определяющие множество Σ .

Мы утверждаем, что $\gamma_{s^*}^+(t)$ является гомоклинической орбитой, примыкающей к началу координат.

3. Существование числа $T^1_{s^*}$. Покажем, что существует число $T^1_{s^*}$.такое, что

a)
$$\dot{x}_{s*}(T_{s*}^1) = 0$$
, $\dot{x}_{s*}(t) > 0 \quad \forall t \in (-\infty, T_{s*}^1)$,
b) $\exists m \in N : \ddot{x}(T_{s*}^1) = ...x_{s*}^{(2m-1)}(T_{s*}^1) = 0$, $x_{s*}^{2m}(T_{s*}^1) < 0$.

Условие a) означает, что существует такой первый момент времени $T^1_{s^*}$, при котором полутраектория попадает на линейчатую поверхность $F_{s^*} = \{d * (y-x) = a * yz, d^* := d(s^*), a^* := a(s^*)\}$. Отметим, что поверхность $F_s := \{\dot{x} = 0\} = \{d(s)(y-x) = a(s)yz\}$ гладко зависит от параметра s.

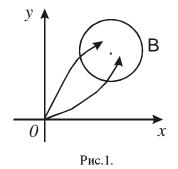
Допустим, что такого момента времени $T^1_{s^*}$ не существует. Тогда $\dot{x}_{s^*}(t)>0$ для всех t, и поскольку система (1) диссипативна [12], то $\gamma^+_{s^*}$ стремится к одной из стационарных точек C^\pm_k (k=1,2,3), если a<0, и к стационарной точке C^\pm_1 , если a>0 (в противном случае ω -предельное

множество траектории лежало бы на линии $F_{s^*} \cap \{x = const > 0\}$, что невозможно, так как там нет целых траекторий.

Возможны только два случая:

- 1) стационарная точка $C_{ks^*}^+$ (k = 1,2,3) устойчива;
- 2) $C_{ks^*}^+$ неустойчива (и в силу предположения (Р) представляет собой седло-фокус с двумерным неустойчивым многообразием, на котором траектории имеют вид спиралей).

В первом случае 1) существует такой шар В с центром в точке $C_{ks^*}^+$, что векторное поле v_{s^*} системы (1) пересекает границу ∂B шара В трансверсально (под некоторым углом) снаружи вовнутрь. Тогда и для всех s достаточно близких k s^* , поле v_{s} пересечет ∂B снаружи вовнутрь. В силу непрерывной зависимости траектории от параметра s полутраектория γ_{s}^+ тоже пересечет границу ∂B (для всех s, достаточно близких k s^*) и, поскольку шар b положительно инвариантен, останется внутри b навсегда. А это противоречит определению b (см.рис.1.; всюду ниже на рисунках будут изображаться проекции неустойчивого многообразия системы (1) на плоскость b b0).



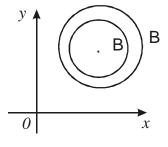


Рис.2.

Во втором случае 2) существуют два таких шара $B_1 \subset B_2$, что траектории, начинающиеся с любой точки границы ∂B_1 шара B_1 сделают два оборота вокруг устойчивого многообразия $\gamma_{s^*}^+$ до того как они выйдут через границу ∂B_2 шара B_2 . Тогда для всех s, достаточно близких к s*, соответствующие траектории γ_s^+ должны сделать по крайнем мере один оборот вокруг устойчивого многообразия стационарной точки C_{ks}^+ до того, как они дойдут до границы ∂B_2 . А это означает, что производная $\dot{x}_s(t)$ изменяет свой знак по крайней мере два раза до того, как $x_s(t)$ достигнет своего первого нуля. Последнее противоречит определению Σ (см. рис.2). Таким образом, наше допущение неверно и, следовательно, существует первый нуль $T_{s^*}^1$. производной $\dot{x}_{s^*}(t)$:

$$\dot{x}_{s^*}(t)>0 \quad \forall t\in (-\infty,T^1_{s^*}), \quad \dot{x}_{s^*}(T^1_{s^*})=0\,.$$

Отметим, что может существовать только конечное число моментов $T_{s^*}^1 < T_{s^*}^2 < ... < T_{s^*}^n$, в которых

$$\dot{x}_{s^*}(T_{s^*}^1) = \dots = \dot{x}_{s^*}(T_{s^*}^n) = 0$$

(по той же причине, что и выше).

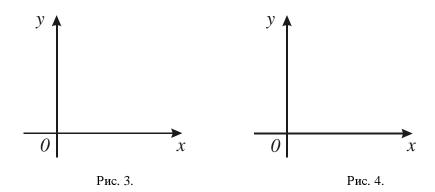
Не умаляя общности, будем считать, что $T^1_{s^*}$ есть одновременно и последний момент обращения производной \dot{x}_{s^*} в нуль до того, как $x_{s^*}(t)$ достигнет своего первого нуля.

Ясно, что не может быть $\dot{x}_{s^*}^{(n)}(T_{s^*}^1) \neq 0$ при n нечетном. Следовательно, существует такое четное число n=2m ($m\in N$), что

$$\ddot{x}_{s^*}(T^1_{s^*}) = x^{(1)}(T^1_{s^*}) = \dots = x^{(2m-2)}(T^1_{s^*}) = 0, \quad x^{(2m)}_{s^*}(T^1_{s^*}) \neq 0.$$

(Если бы и последнее не имело место, то имели бы $\dot{x}_{s^*}^{(n)}(T_{s^*}^1)=0\ \forall n\in N,\$ а, следовательно, $x_{s^*}^{(n)}(t)\equiv 0\$ в силу аналитичности правых частей системы (1), что невозможно). Так как $x_{s^*}(t)$ возрастает при $t< T_{s^*}^1$, то $x_{s^*}^{(2m)}(T_{s^*}^1)<0$. (см. рис.3.).

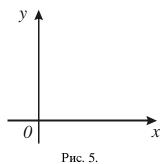
Итак, утверждение настоящего пункта доказано.



4. Определение числа $T_{s^*}^2$ и его свойства. Определим число $T_{s^*}^2 \coloneqq \underline{\lim} T_s^2$. Покажем, что $T_{s^*}^2 < +\infty$, т.е. что $T_{s^*}^2$ конечное число. Допустим противное: $T_{s^*}^2 = +\infty$ (тогда $\exists \lim_{s \to s^* \to 0} T_s^2 = +\infty$). В силу непрерывной зависимости траектории от параметра s и определения числа $T_{s^*}^2$, будем иметь: $\dot{y}_{s^*}(t) \le 0$, $y_{s^*}(t) \ge 0$ для всех t > 0 (путем сдвига времени всегда можно сделать $T_s^1 = 0$ для всех s∈ [0, s*]). Заметим, что на самом деле $y_{s^*}(t) > 0 \ \forall t > 0$, так как в противном случае из-за монотонного убывания $y_{s^*}(t)$, имели бы $y(t) \equiv 0$, с некоторого момента $t_{s^*}^0$, что, очевидно, невозможно.

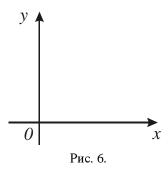
Имеются только две возможности:

- 1) траектория $\gamma_{s^*}^+$ пересекает поверхность F_{s^*} и оказывается в области $\{\dot x>0\}$ до того, как пересечет плоскость $\{y=0\}$ и достигнет плоскости $\{x=0\}$, то есть $\exists t^0_{s^*}: \dot x_{s^*}(t^0_{s^*})=0$ и $\dot x_{s^*}(t)>0$ $\forall t\in (t^0_{s^*},t^0_{s^*}+\mathcal E),\, \mathcal E>0$ (см рис.4.);
- 2) траектория $\gamma_{s^*}^+$ остается все время между поверхностью F_{s^*} и плоскостью $\{y=0\}$, т.е. $y_{s^*}(t) > 0$ и $x_{s^*}(t) < 0$ для всех t > 0 (см. рис.5).



В первом случае 1) в силу непрерывной зависимости траектории от s и гладкой зависимости поверхности F_s от параметра s для всех s, достаточно близких к s^* , поведение γ_s^+ будет таким же, как и $\gamma_{s^*}^+$, т.е. $\exists t_s^0 \in (0,T_s^2)$ такой, что $\dot{x}_s(t_s^0) = 0$ и $\dot{x}_s(t) > 0 \forall t \in (t_{s^*}^0,t_{s^*}^0+\mathcal{E})$, а это противоречит определению Σ .

Во втором случае 2), поскольку траектория $\gamma_{s^*}^+$ ограничена (диссипативность системы (1)), то она должна приближаться к началу O(0, 0, 0) при t \to + ∞ . Заметим, что к другим стационарным точкам C_{ks}^+ она не может приближаться по тем же соображениям, что и выше. Но траектория может входить в стационарную точку O только на направлению вектора ξ_{λ_2} , лежащего в области $\{x>0,\,y<0\}$ (см. рис.6). Поэтому случай 2) тоже невозможен. Следовательно, $T_{s^*}^2<+\infty$.



В силу непрерывной зависимости траектории от s, определения числа T_s^2 и соотношения $\lim T_{s_i}^2 = T_{s_i}^2$, , где $s_i \to s^* - 0$ при $i \to +\infty$ будем иметь:

$$y_{s^*}(T_{s^*}^2) = 0$$
, $y_{s^*}(t) \le 0 \quad \forall t \in [0, T_{s^*}^2]$.

Отметим, что вообще говоря, $\dot{y}_{s^*}(T^1_{s^*}) \le 0$, (или $\dot{y}_{s^*}(0) \le 0$, если $T^1_{s^*} := 0$).

Покажем, что $\dot{y}_{s^*}(t) < 0$ для всех $t \in (0, T_{S^*}^2)$. Если в некоторый момент времени $t^0 \in (0, T_{s^*}^2)$ $\dot{y}_{s^*}(t^0) = 0$ (а $y_{s^*}(t^0) > 0$), то $\ddot{y}_{s^*}(t^0) = 0$, так как $\dot{y}_{s^*}(t) \leq 0$.

Из второго уравнения системы (1) будем иметь

$$\dot{y} + y = (r - z)x \Rightarrow (r^* - z_{s^*}(t^0))x_{s^*}(t^0) = y_{s^*}(t^0) > 0 \Rightarrow z_{s^*}(t^0) < r^*(r^* := r(s^*)),$$

$$\ddot{y} + \dot{y} = (r - z)\dot{x} - x\dot{z} \Rightarrow [(r^* - z_{s^*})\dot{x}_{s^*} - x_{s^*}\dot{z}_{s^*}]_{t=t^0} = 0 \Rightarrow \dot{z}_{s^*}(t^0) < 0.$$

Из третьего уравнения системы (1) имеем

$$\ddot{z} + bz = \dot{x}y + x\dot{y} \Rightarrow \ddot{z}_{s^*} + b\dot{z}_{s^*} \le 0 \quad \forall t \in (0, T_{s^*}^2) \Rightarrow$$
$$\Rightarrow \dot{z}_{s^*}(t) \le \dot{z}_{s^*}(t^0)e^{-b(t-t^0)} < 0,$$

то есть $\dot{z}_{s^*} < 0$ для всех $t \in [t^0, T_{s^*}^2]$. Отсюда и из неравенства $z_{s^*}(t^0) < r^*$ получаем $z_{s^*}(t) < r^*$ для всех $t \in [t^0, T_{s^*}^2]$. В частности, $z_{s^*}(T_{s^*}^2) < r^*$. Однако из второго уравнения системы (1) имеем в момент $t = T_{s^*}^2$:

$$0 \ge \dot{y}_{s^*}(T_{s^*}^2) + y_{s^*}(T_{s^*}^2) = (r^* - z_{s^*}(T_{s^*}^2)) x_{s^*}(T_{s^*}^2) \Longrightarrow z_{s^*}(T_{s^*}^2) \ge r^*,$$

так как $y_{s^*}(T_{s^*}^2)=0,\ \dot{y}_{s^*}(T_{s^*}^2)\leq 0,\ x_{s^*}(T_{s^*}^2)>0$. Получили противоречие. Таким образом, $\dot{y}_{s^*}(t)<0\ \forall t\in (T_{s^*}^1,T_{s^*}^2)$.

Tenepb покажем, что $\dot{y}_{s^*}(T_{s^*}^2) < 0$. Допустим противное, т.е. $\dot{y}_{s^*}(T_{s^*}^2) = 0$. Так как $y_{s^*}(t) > 0$ при $t \in [0, T_{s^*}^2)$ ($T_{s^*}^1 \coloneqq 0$) и $y_{s^*}(t) \le 0$ при $t \in [T_{s^*}^2, T_{s^*}^2 + \mathcal{E})$, $\mathcal{E} > 0$, то в силу непрерывной зависимости траектории от параметра s и определения числа s* будем

иметь $\ddot{y}_{s^*}(T_{s^*}^2)=0$. Но с другой стороны, имеет место *следующий факт*: если в некоторый момент времени $t=t_1\geq T_{s^*}^2$ $y_{s^*}(t_1)=\dot{y}_{s^*}(t_1)=0$, то $\ddot{y}_{s^*}(t_1)>0$. Действительно, имеем

$$\dot{y} + y = (r - z)x \Rightarrow (r * -z_{s^*}(t_1))x_{s^*}(t_1) = 0 \Rightarrow z_{s^*}(t_1) = r^*.$$

Лапее

$$\dot{z} + bz = xy \Rightarrow \dot{z}_{s^*}(t_1) + bz_{s^*}(t_1) = 0 \Rightarrow \dot{z}_{s^*}(t_1) = -br^* < 0.$$

Олнако

$$\ddot{y} + \dot{y} = (r - z)\dot{x} - x\dot{z} \Rightarrow [(r * -z_{s*})\dot{x}_{s*} - x_{s*}\dot{z}_{s*}]_{t=t_1} = \ddot{y}_{s*}(t_1) < 0.$$

Отсюда

$$x_{c*}(t_1)\dot{z}_{c*}(t_1) > (r*-z_{c*}(t_1)\dot{x}_{c*}(t_1) = 0 \Rightarrow \dot{z}_{c*}(t_1) > 0.$$

Получили противоречие. Следовательно, $\ddot{y}_{s^*}(t_1) > 0$.

Принимая теперь $t_1 \coloneqq T_{s^*}^2$, из только что установленного факта получаем $\ddot{y}_{s^*}(T_{s^*}^2) > 0$,

что противоречит равенству $\ddot{y}_{e^*}(T_{e^*}^2) = 0$ (см. выше).

Таким образом, $\dot{y}_{s^*}(T_{s^*}^2) < 0$, следовательно, $y_{s^*}(t) > 0$ для всех $t \in [T_{s^*}^2, T_{s^*}^2]$, и $\dot{y}_{s^*}(t) > 0$, $\forall t \in (T_{s^*}^1, T_{s^*}^2]$.

5. Определение числа $T_{s^*}^3$ и его свойства. Определим

$$T_{s^*}^3 := \lim_{\stackrel{\longleftarrow}{s \to s^*} \to 0} T_S^3$$
.

Покажем, что число $T_{s^*}^3 = +\infty$. Допустим, что это не так, т.е. число $T_{s^*}^3$ — конечное число. Тогда в силу непрерывной зависимости траектории γ_s^+ от параметра s и определения чисел s* и $T_{s^*}^3$, будем иметь:

$$x_{s*}(T_{s*}^3) = 0, \quad x_{s*}(t) > 0 \quad \forall t \in (-\infty, T_{s*}^3),$$

 $y_{c*}(t) \le 0 \quad \forall t \in [T_{c*}^2, T_{s*}^3].$

В силу доказанного в п.4 факта $y_{s^*}(t) < 0 \quad \forall t \in (T_{s^*}^2, T_{s^*}^3)$.

Далее, траектория γ_{s}^{+} не может попасть на ось z, так как она сама тоже состоит из двух траекторий, примыкающих к стационарной точке O(0, 0, 0). Следовательно $y_{s}(T_{s}^{3}) < 0$.

Итак, имеются три возможности попадания траектории γ_{s}^{+} на плоскость $\{x=0\}$:

1) траектория γ_s^+ попадает на часть поверхности F_{s^*} , лежащей в области $\{x>0,\,y<0\}$ конечное число раз, т.е. существуют моменты $t_1 < t_2 < ... < t_k$, $t_i \in (T_{s^*}^2, T_{s^*}^3)$ (i=1,...,k) такие, что $\dot{x}_{s^*}(t_i)=0$, а затем $\gamma_{s^*}^+$ попадает на плоскость $\{x=x_0\}$ (см. рис.7.);

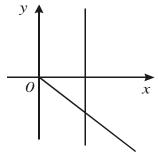
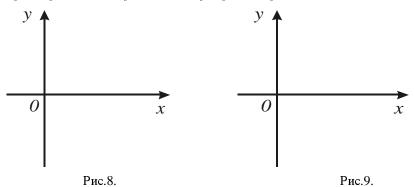


Рис. 7.

2) траектория $\gamma_{s^*}^+$ попадает на часть полуплоскости $\{x=0,\,y<0\}$, где $\dot{x}<0$, т.е. в область $\{x=0,\,y<0,\,z<d/a\}$, если a>0, и в область $\{x=0,\,y<0,\,z>d/a\}$, если a<0, т.е. $\dot{x}_{s^*}(T_{s^*}^3)=0,\,\dot{x}_{s^*}(T_{s^*}^3)<0$, причем $\dot{x}_{s^*}(t)<0,\,\forall t\in[T_{s^*}^2,T_{s^*}^3]$, (см. рис.8);

3) траектория $\gamma_{s^*}^+$ попадает на прямую $\{x=0,\ y<0,\ z=d/a\},$ где $\dot{x}=0$, т.е. $\exists t^0\in (T_{s^*}^2,T_{s^*}^3):\dot{x}_{s^*}(t^0)=0,\ x_{s^*}(t^0)=0,\ y_{s^*}(t_0)<0,\ z_{s^*}(t^0)=d\ /\ a$ (см. рис.9).



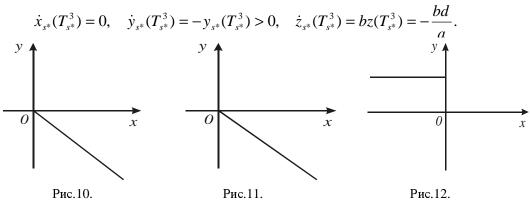
В первом случае 1) траектория γ_s^+ не может перейти с одной стороны F_{s^*} , где $\dot x < 0$, на другую сторону F_{s^*} , где $\dot x > 0$, так как иначе в силу непрерывности γ_s^+ по параметру s и гладкой зависимости поверхности F_s от s имели бы $\dot x_s(t_1) > 0$, для некоторого момента $t_1 > t_0$ (здесь $t^0: \dot x_{s^*}(t^0) = 0$)) и всех s, достаточно близких к s*, что невозможно, так как это противоречит условию 3) в определении множества Σ .

Поэтому в этом случае траектория $\gamma_{s^*}^+$ достигает плоскости $\{x{=}0\}$ в момент $t=T_{s^*}^3$, предварительно попав конечное число раз на поверхность F_{s^*} (см. рис. 10).

Во втором случае 2) траектория $\gamma_{s^*}^+$ попадает на плоскость $\{x=0\}$ сразу из области $\dot{x} < 0$, т.е. (см. puc.11).

$$\dot{x}_{s^*}(t) < 0, \forall t \in (T_{s^*}^2, T_{s^*}^3), \quad x_{s^*}(T_{s^*}^3) = 0, \quad \dot{x}_{s^*}(T_{s^*}^3) < 0.$$

В третьем случае 3) (см. рис. 12)



Итак, в любом случае мы имеем $\dot{x}_{s^*}(T^3_{s^*}) \leq 0$, причем равенство в последнем неравенстве возможно только на линии $\{x\!=\!0,\ y\!=\!0,\ z=d/a\}$. Следовательно, $T^3_{s^*}$ удовлетворяет третьему условию в определении Σ . Тогда с учетом доказанных в пп. 3 и 4 утверждений, получаем $s^*\in\Sigma$, что противоречит определению s^* .

Таким образом $T_{s^*}^3 = +\infty$, т.е. $x_{S^*}(t) > 0$ и $\dot{x}_{S^*}(t) \le 0$ для всех $\forall t \in (T_{s^*}^2, +\infty)$.

6. Завершение доказательства теоремы.

Поскольку $\dot{x}_{s^*}(t) \leq 0$, $\forall t \in (T^2_{s^*}, +\infty)$, то существует $\lim_{t \to +\infty} x_{s^*}(t) = x_{s^*}^{\infty} \geq 0$. Ясно, что

не может быть $x_{s^*}^{\infty} \geq 0$. (иначе $\,\omega$ -предельное множество траектории $\,\gamma_{s^*}^{+}\,\,$ лежало бы на плоскости

 $\{x=x_{s^*}^\infty\}$, чего быть не может). Итак, $\lim_{t\to +\infty}x_{s^*}(t)=0$. Следовательно, ω -предельное множество

 $\Omega(\gamma_{s^*}^+)$ траектории $\gamma_{s^*}^+$ лежит в замкнутой области $G_{s^*}^0$ полуплоскости $\{x=0, y\leq 0\}$, ограниченной отрезком оси z и некоторой гладкой кривой (являющейся пересечением области диссипативности системы (1) с полуплоскостью $\{x=0, y<0\}$, концы которой примыкают соответственно к концам указанного отрезка оси z.

Поскольку в области $G^0_{s^*}$, кроме точки O(0, 0, 0) нет целых траекторий, то $\Omega(\gamma^+_{s^*}) = O$ (см.

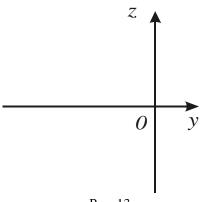


Рис. 13.

Следовательно, существуют

$$\lim_{t \to +\infty} y_{s^*}(t) = \lim_{t \to +\infty} z_{s^*}(t) = 0.$$

 $\lim_{t\to +\infty} y_{s^*}(t) = \lim_{t\to +\infty} z_{s^*}(t) = 0.$ Итак, $\gamma_{s^*}^+ \to O$ при $t\to +\infty$. Этим установлено, что $\gamma_{s^*}^+(t)$ является гомоклинической орбитой, примыкающей к началу координат.

Теорема доказана полностью

Замечание1. Для системы Лоренца (a=0) условия 1) – 3) теоремы выполнены при

$$d \ge \frac{2b+1}{3} \tag{3}$$

и достаточно большом значении параметра r, а условие (2) имеет место при

$$0 < d < \frac{2b+1}{3} \tag{4}$$

и любом фиксированном значении г (см. [3], [5], [15]).

Поэтому условия теоремы будут выполнены, например, для только что указанных выше значений параметров b, d, r (см. [3], [4]) и всех достаточно малых по модулю значениях параметра a.

Замечание 2. Оценка (3) для системы Лоренца была получена впервые Г.А. Леоновым в работе [15], в которой также было высказано предположение об ее неулучшаемости. Последний факт был установлен Х. Чэном в работе [3].

Замечание 3. Насколько нам известно, открытым остается вопрос о получении неулучшаемой оценки, аналогичной (3), параметров бифуркации петли сепаратрисы (гомоклинической орбиты) седла для обобщенной системы Лоренца, т.е., спрашивается, какое соотношение между параметрами d,

b, и a является необходимым и достаточным условием для того, чтобы обобщенная система Лоренца (1) при достаточно больших значениях параметра г имела гомоклиническую орбиту?

Литература

- 1. Hasting S.P., Troy W.C.//Bull. Amer. Math. Soc. 1992 (27)
- 2. Hasting S.P., Troy W.C.//Journ. of Diff. Eq. 1994 (113) 3.Chen X. //SIAM, Journ. Math. Anal. 1996(27:4)
- 4. Леонов Г.А.//Вестник С.-Петербург. гос. университета. Сер. 1.—1999. №1
- 5. ${\it Леонов}\ {\it \Gamma}.A.//{\it Прикл.}$ Матем. и Mex. (в печати).
- 6. Глуховский А.Б., Должанский Ф.В.//Изв. АН СССР. Физика атмосф. и океана. 1980. т. 16. №5
- 7. Пиковский А.С., Рабинович М.Н., Трахтенгерц В.Ю.// Журн. эксперим. и теорет. физики, 1978. т.
- 8. Леонов Г. А., Морозов А.В.// Прикл. Матем. и Мех. 1988. Т.52. вып. 1
- 9. Сонечкин Д.М. Стохастичность в моделях общей циркуляции атмосферы. Л., 1984.
- 10. Денисов Г.Г.// Изв. АН СССР. Мех. Тверд. Тела. 1989. № 4.
- 11. Рабинович М.И.//Успехи физических наук. 1978. т. 125. вып.1
- 12. Леонов Г.А., Буркин И.М., Шепелявый А.И. Частотные методы в теории колебаний (часть 2). СПб. 1992.
- 13. Hassand, Zhang //SIAM, Journ. Math. Anal. 1994 (25)
- 14. Xарmман Φ . Обыкновенные дифференциальные уравнения. М., 1970.
- 15. *Леонов Г.А.*//Диф. уравнения 1988, № 6.

On Existence of Homoclinic Orbit for Generalized Lorenz System

M.M.Shumafov

Existence of homoclinic orbit for generalized Lorenz system is established.

КъеlолІэн

Мышъэостэ ыкъоу Шумафэ Мыхьамэт

Мы тезисым къмтреlуатэ сыдыгъуа ушъомбгъугъэ Лоренц исистемэ гомоклиникэ гъогу зиlэу хъурэр.