ON PRINCIPAL SOLUTIONS OF ONE SYSTEM OF THE NONLINEAR DIFFERENTIAL EQUATIONS

J.D. Mirzov

Adygeia State University, Maikop

Resume

Consinder a system

$$u_1' = a_1(t)|u_2|^{\lambda_1} signu_2, u_2' = -a_2(t)|u_1|^{\lambda_2} signu_1,$$
(1)

where $a_1:[0,+\infty)\to[0,+\infty)$, $a_2:[0,+\infty)\to R$ are locally summable functions, $\lambda_i>0$ (i=1,2) and

$$\lambda_1 \lambda_2 = 1. \tag{2}$$

Let the solution $u_1(t), u_2(t)$ of system (1) is those, that for some $t_0 \ge 0, u_1(t) \ne 0$ at $t \ge t_0$. Let's assume

$$z(t) = u_2(t)signu_1(t)/|u_1(t)|^{\lambda_2} for t \ge t_0.$$
(3)

It is easily tested that z(t) is a solution of the following equation of the Riccati type

$$z' + \lambda_2 a_1(t)|z|^{1+\lambda_1} + a_2(t) = 0 \tag{4}$$

given on $[t_0, +\infty)$.

Let there is $t_1 > t_0$ such that $\int_{t_0}^{t_1} a_1(t)dt > 0$. Then we'll find $t^0 > t_0$ and that equation (4) has a solution, given on $[t_0, t^0)$ and not on to the right.

We shall designate as M a point set of straight $t = t_0$ though which solutions not gone on to the right pass. Clearly, that this set is bounded above. Let's assume $\gamma = \sup M$ and following [1] we shall introduce definition.

Definition 1. We shall call solution z(t) defined at initial condition $z(t_0) = \gamma$ a boundary solution of equation (4).

Definition 2 (see [2]). We shall call solution $u_1(t), u_2(t)$ of system (1) with a component $u_1(t) \neq 0$ for $t \geq t_0$ the **principal**, if the function z(t), defined by equality (3), is a boundary solution of equation (4).

Theorem. Let (2),

$$\int_{t_0}^{+\infty} a_1(t)dt = +\infty, 0 \le \int_{t}^{+\infty} a_2(\tau)d\tau < +\infty$$

$$r_0(t) = \int_{t}^{+\infty} a_2(\tau)d\tau, r_n(t) = \lambda_2 \int_{t}^{+\infty} a_1(\tau)r_{n-1}^{1+\lambda_1}(\tau)d\tau + \int_{t}^{+\infty} a_2(\tau)d\tau,$$

$$\lim_{n \to +\infty} r_n(t) = r(t)$$

at $t \ge t_0$ take place. Then in order that the solution $u_1(t), u_2(t)$ of system (1) may be the principal, realization of equality

$$u_2(t)sign u_1(t)/|u_1(t)|^{\lambda_2} = r(t) \text{ for } t > t_0$$

is necessary and sufficiently or, that same,

$$u_1(t) = u_1(t_0) \exp \int_{t_0}^t a_1(\tau) r^{\lambda_1}(\tau) d\tau \text{ for } t \ge t_0$$

References

- 1. Sobol I.M., Boundary solutions of the Riccati equation and its application to study of a solution of a linear differential second-order equation. (in Russian) Uchenye Zapiski MGU. Mathematics, 5,(1952), No. 155, 195-205.
- 2. Mirzov J.D., Asymptotic properties of solutions of systems of the nonlinear nonautonomous ordinary differential equations. (in Russian) Maikop, RIPO "Adygeia", p-p.132.

O главных решениях одной системы нелинейных дифференциальных уравнений

Дж. Д. Мирзов

Указана оригинальная характеристика главного решения одной нелинейной системы дифференциальных уравнений.